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Abstract

Great effort has been put into probing the universe for new forces beyond the
standard model. Researchers mainly concentrate on forces that arise from possible,
but not yet detected, consequences of particle theories. One such construct is the
Yukawa potential. In this study, we will concentrate on deriving constraints for
the parameters of the Yukawa potential in three different systems — the Sun-Earth

system, a binary pulsar, and a terrestrial free-fall experiment.



Chapter 1

Introduction

1.1 Fifth Forces and the Yukawa Potential

Newton’s Law of gravitational attraction was formulated by studying the ap-
parent behavior of objects. By continuing this study we may find new forces, so-called
fifth forces, that have previously gone unnoticed. Discounting relativity, the goal of
studying fifth forces — very small modifications to Newtonian gravity — is to use
phenomena to build constraints on possible additions to the gravitational potential[8].
This is not only a useful test of our theories of gravity, but an important look into
possible extensions of the Standard Model of particle physics. Some proposed parti-
cles and symmetries would create forces much weaker than gravity, and constraints on
these effects will rule out possible theories. When these theories are ruled out, particle
physics is able to concentrate on more probable solutions to the current deficiencies
in its models.

In this study, we will focus on a single (and extremely important) type of potential,
called a Yukawa potential. This potential is associated with the exchange of scalar or
vactor bosons [24]; currently, these are very important because they are associated
with the Higgs mechanism, axions, and most other proposed additions to current

theory. We will concentrate exclusively on the potential associated with scalar bosons,



and so we use the terms “Yukawa potential” and “scalar potential” interchangeably.

In general, the form of this potential is

but since we will work with them in the context of gravity, we accept the standard

convention and redefine o so that

Vi) = —aGmimee X (L.1)

r

This is the equation for the additional potential energy between two bodies due to the
presence of the scalar potential. In this equation, « is called the coupling constant or
strength of the potential; A is often referred to as the range, but in this paper it will
be referred to as the distance scale of the potential. Note that in the case of scalar

potentials, the coupling constant in (1.1) is greater than zero [8].

1.2 Current Research on Fifth Forces

A large amount of research into constraints on these parameters has already been
conducted. Figure 1.1 summarizes the work to date. The shaded areas are the pa-
rameter values ruled out by current experimental evidence. Note that the constraints
in figure 1.1 asssume a scalar potential which couples to mass uniformly — this type
of potential is called composition-independent.

In addition to studying this type of potential, we will also investigate composition-
dependent potentials. The strength of a composition-dependent potential depends
on the properties of the mass to which it couples. Among the properties that the
coupling strength can depend on are isospin (neutron number minus proton number),
baryon number (total number of nucleons), and a few other nuclear properties. These

forces will create measurable differences in the gravitational accelerations of unlike
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Figure 1.1: Constraints on the Yukawa Potential as of 1998

masses. Although all scalar interactions will in principle be composition-dependent
[5], coupling to mass will effectively be composition-independent at large distance
scales because, as we shall soon see, significant composition-dependent effects are

only possible at very short ranges.

1.2.1 Composition-Independent Constraints

In order to understand how this research fits into the larger project to discover
the constraints on forces weaker than gravity, we will now briefly summarize the
work performed to date [8]. The first half of the research investigates composition-
independent forces, and we shall survey this work by working our way across figure
1.1 from short to long distance scales.

The first distance scale range is the laboratory range, which involves all fifth



forces with distance scales less than one meter. The work that represents the best
constraints in this range was performed by Spero and Hoskins et. al. [20] [10]; Spero
et. al. have produced constraints in the 2-5cm region, and Hoskins ef. al. have
studied the 5-105cm region. Both used torsion balances in different setups to search
for anomalous effects. These are null experiments; in other words, they are set up so
that zero-effect measurements correspond to ordinary Newtonian gravity.

Figure 1.2 illustrates how the basic torsion balance experiment works. In Spero
et al’s experiment, a test mass is placed inside a homogeneous metal cylinder and
enclosed in a thermally and magnetically shielded vacuum chamber. Given a standard
inverse-square force between the test mass and an infinite cylinder, there will be no
net effect on the torsion balance (the experimenters made special adjustments for the
fringe fields at the end of the cylinder). But a weak non-Newtonian potential will
create a net force on the mass. In response to this force, there would be a net torque
about the tungsten wire, and the experimental apparatus would begin precessing.
This motion would be picked up in tandem by the optical and electrostatic sensors.
The experiment produces a null result; Spero et. al. find no evidence for deviations
from Newtonian gravity. A Yukawa potential at the relevant distance scale is thus
constrained to produce an effect within the experimental error; the region excluded
produces effects which are beyond two standard deviations of the null result.

Hoskins et. al.’s experiment is a slight modification of this setup. The test mass
of the torsion balance is on a small track and interacts with another mass on a
track across a room. The near mass and the far mass are chosen so that the regular
Newtonian interaction between the two as they are moved along the tracks produces
no effect on the torsion balance. But a non-Newtonian force will produce a net torque
on the torsion balance that can be measured by the apparatus’s sensors. Again a null

result was found, and the experimental error constrains a Yukawa potential over the



corresponding distance scale.

There are several difficulties confronting experiments dealing with these distances.
Primarily, they must control non-gravitational forces acting on the experimental
setup. The torsion balances in these experiments had to be shielded from outside
interference from electromagnetic effects and be enclosed in a vacuum, for instance.
These effects are responsible for the experimental uncertainty, and can be quite dif-
ficult to control. One experiment by Long that purportedly suggested the existence
of a force in this range, but it was later found that his floor was slightly tilted, which
was the source of the anomalous effect [8].

It is even more difficult to constrain potentials whose distance scale is within
the so-called “geophysical window”, which corresponds to ranges between one meter
and one hundred kilometers. In this range, experimental tests for non-Newtonian
gravity involve some sort of interaction with a geological formation or the earth itself.
Although other types of experiments have been performed, the best constraints on
potentials in this region are currently provided by lake and tower experiments.

The lake experiment of Hubler et. al. provides the next region of constraint on
Yukawa potentials. This type of experiment is performed next to a body of water
and measures the force on two different separated masses.

The lake used is actually a reservoir, and so the water level can be raised and
lowered, as shown in figure 1.3. By comparing measurements of the force due to the
mass of the lake at different water levels, any fifth-force can be separated from the
predicted gravitational force. As with the torsion balance experiments, no anomalous
effect was detected, and the experimental error determines the “lake” portion of the
curve in figure 1.1.

The most precise tower experiment was performed by Romaides et. al. in 1994

[18]. Tower experiments measure the gravitational acceleration due to the Earth at



various heights up a tall tower. The key to this type of experiment is an accurate
survey of the local terrain; because measurements are being taken very close to the
Earth’s surface, variations in local mass densities would be read as an anomalous
effect if not accounted for. In this experiment, a 610m tall tower in Inverness, MS was
specifically chosen because it was in the middle of a very flat clearing. Romaides et.
al. had to be extremely thorough in taking accurate surveys of the area surrounding
the site, especially around the base of the tower. After taking measurements at
five different heights and accounting for local features, they were able to constrain
Yukawa-type potentials to within experimental error.

Perhaps the most striking feature of the current bounds is how relatively weak the
constraints are in the geophysical window. This is due to the tremendous difficulties
one encounters when attempting to study interactions between a test mass and the
Earth. In order to measure this gravitational effect with high precision, it is impera-
tive that the density and shape of the local area be known to equally high precision.
For instance, if there were a giant iron deposit near the tower in Inverness, the net
gravitational pull of the Earth would be slightly different than expected because of
the relatively large effect of this local inhomogeneity. Experiments involving water
are at a slight advantage here; finding the density of a standing body of water is not
much of a problem. However, one must still take into account the terrain surrounding
the water. Although experiments measuring the force of gravity in the ocean have
been attempted, they are not as accurate because of the poorly understood features
of the ocean floor [25].

Constraints at higher distance scales are provided by satellite and astrophysical
observations. The first range, spanning the Earth-LAGEOS and LAGEOS-Lunar ar-
eas of figure 1.1, is made up of two types of observations of the Earth-Moon system

made with the help of the LAGEOS satellites. LAGEOS 1 and 2, the LAser GEOdy-



namics Satellites, are two perfectly spherical satellites designed to reflect laser beams
from stations on the Earth [17]. Reception of the reflected signals allows for ranging
accurate to within three centimeters. This incredibly accurate rangefinding makes
these two observations possible.

The Earth-LAGEOS observation is a measurement of the LAGEOS 1 satellite’s
orbit performed by Smith et. al. [19]. There are 80 Earth-based stations placed
around the world that are designed to take laser rangefinding measurements of the
satellite. In this particular observation, ranges were taken continuously over a series
of days, resulting in hundreds of thousands of accurate distance measurements. From
this data, the orbital parameters of the satellite may be inferred to high accuracy. In
their analysis, Smith et. al. use this to determine the product of the gravitational
constant and the mass of the Earth to a precision of iO.OOZ’%B. Now the Yukawa
potential may be interpreted as a position-dependent gravitational constant; taking

the sum of a Yukawa potential and the normal gravitational potential, we find

Gr)Mpms _ GoMpms ;%)
T T

G(r) = (14 ae %)

Since no anomalous effects were detected in the orbit of the satellite, a Yukawa po-
tential is constrained within the observational uncertainty, as shown in figure 1.1.
The LAGEOS-Lunar measurement was much more difficult from a technical stand-
point [6]. The Apollo 11, 14, and 15 missions carried corner-cube retroreflector arrays
to the Moon and placed them at widely spaced intervals. These arrays, along with
one placed on a Soviet rover, are entirely passive and are designed to reflect electro-
magnetic radiation. Despite the fact that the intensity decreases by 102! in reflection
from the Earth to the Moon and back, stations on the Earth designed to distinguish

single-photon signals are able to make rangefinding measurements that are accurate



to within 10 centimeters. Using these signals and reflections from the LAGEOS satel-
lites, Dickey et. al. were able to accurately determine the orbital parameters of the
Moon in the Earth-Moon system. One result of these calculations was a constraint on
violations of the Weak Equivalence Principle - the result of such violations would be
a shift in the center of the Moon’s orbit towards the Sun. As noted above, violations
of the WEP may simply be restated in terms of a fifth-force, and so this constraint on
violations of the WEP also puts a constraint on the parameters of a Yukawa poten-
tial. The results of the analysis of these observations make up the LAGEOS-Lunar
portion of figure 1.1.

The planetary region of the constraint curve comes from measurement of the peri-
astron precession of Mars and Mercury (see sections 3.1 — 3.3 for more details). Simple
astronomical observation of the orbits of these planets allows us to make measure-
ments of this anomalous effect. The precession is a result from General Relativity;
being free-falling objects, the planets move in the geodesics of the Schwarzschild
metric whose central gravitating mass is the Sun [3]. In the weak field limit, these
geodesics will correspond to ordinary Keplerian orbits. However, because the masses
in a Sun-Planet system are so large, a non-Keplerian element of the geodesic mani-
fests itself, and the planet’s orbit will rotate in the orbital plane. This effect, known

as the precession of the periastron, is given by

67 G2 M?
Ap= T2 2
12
We are able to constrain a Yukawa potential to the accuracy that we can measure
this effect because this potential will create an additional precession. Observations
of the precessions of Mars and Mercury make up the remainder of figure 1.1 [8]. A

reader confused by this paragraph should not worry; much more will be said on this

topic in Chapter 3.



1.2.2 Composition-Dependent Constraints

The principal tests that are used to constrain composition-dependent scalar potentials
are torsion balance and free-fall experiments. Each of these has its advantage - torsion
balances are more sensitive, but free-fall experiments are able to provide constraints
for a more extensive range of distance scales [8]. The composition-dependent torsion
balance experiment is also called an Eotvos experiment; a good example of this type
of experiment was performed by Boynton et. al. in 1987 [2] - the experimental setup
is given in figure 1.4. This experiment uses a modified torsion balance; instead of
a lever arm, it has an aluminum-beryllium ring hanging from the torsion wire. The
experimental assembly is placed four meters inside the face of a 330-meter-tall cliff in
Washington State. The tunnel into the cliff is monitored for constant temperature,
magnetically shielded by Helmholtz coils, and sealed from the outside air. Calibration
allows the experimenters to determine the initial tilt on the assembly due to the
mass distribution inside the cliff. In the presence of a non-Newtonian composition-
dependent potential, the aluminum-beryllium ring becomes a dipole. The apparatus
is rotated so that the dipole axis is perpindicular to the cliff face (i.e., one side of
the ring faces toward the cliff and the other faces away) and small oscillations of the
torsion balance are measured. A signal was discovered offering possible evidence for
a fifth force coupling primarily to isospin (neutron number minus atomic number) at
distance scales 20m < A\ < 1km, but further experimentation is required in this area.

A second type of test is the free-fall experiment, also known as a Galilean exper-
iment. In these experiments, objects of different composition but identical inertial
mass are dropped to determine if they fall at the same rate. This is really just a
direct test of the Weak Equivalence Principle; if the objects fall at exactly the same
rate, inertial and gravitational mass are identical and there can be no modification

of Newtonian gravity. We will have much more to say on this type of experiment in



Chapter 2.

1.2.3 Concluding Remarks

In this paper, we will seek to expand upon this research by studying two systems which
constrain composition-independent potentials and one which constrains a composition-
dependent potential. We first investigate whether measuring a shift in the Earth-Sun
Lagrange points can create useful constraints on a Yukawa potentials with distance
scales between 10° and 107 kilometers. Our second system will be the binary pulsar
B1913+16; we will calculate the constraint created by the precession of its periastron.
Finally we will study the constraints placed on a specific composition-dependent po-

tential by a Galilean free-fall experiment performed in 1992.

10
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Chapter 2

Shift in Lagrange Orbital Points
Due to a Scalar Potential

2.1 Lagrange Points

Consider a two-body system in which one mass is very much larger than the
other. Then the center of the heavier body, which we will call the central body, will
be approximately at the center of mass of the system, and the lighter body, which
we call the orbiting body, will appear to orbit it. Assume that the orbit of this body
is circular, or approximately so. In this system, there exist five orbital points called
Lagrange points [1]. The significance of these points is that objects placed at these
locations will remain at the same position relative to the orbiting body provided there
is no force to disturb this equilibrium. Appropriately, these five points are named L1,
L2, 1.3, L4, and L5, and their positions are shown in figure 2.1 below. L1, L2, and L3
are on the line intersecting the centers of the two bodies: L1 is a small distance from
the orbiting body, between the central and orbiting bodies; L2 is a short distance
from the orbiting body on its far side; and L3 is on the intersection of this line and
the circle formed by the orbit. 1.4 and L5 are also located on the circle that the orbit
forms. Consider the line segment whose endpoints are the center of the two bodies

and then construct two equilateral triangles whose base is this line segment and whose

14



apex is on the orbit’s circle. These two apices are the L4 and L5 orbital points. L4
is defined to be the point ahead of the orbiting body in its orbit and L5 is defined to

be the point behind it.

Figure 2.1: The Lagrange points of the Sun-Earth system

We are interested in these points in the context of the Earth-Sun system. This
system is essentially two-body since the small effects of the gravitational fields of
nearby planets may be ignored. If a scalar potential is added to the system, the
positions of these orbital points will change. By measuring the actual distance from
the Earth to an object orbiting at a Lagrange point it would be possible put an
observational constraint on a change in that point’s position. This limit would dictate
the maximum potential strength allowed for a given distance scale and therefore the
types of possible scalar potentials. In this study we will concentrate on the L2 point
for the reason that the WMAP (Wilkinson Microwave Anisotropy Probe) has been
put in orbit around it, and distance measurements would, presumably, have been

taken at regular intervals[16].
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Calculating the location of Lagrange points involves finding locations in the two-
dimensional plane formed by the system where a third body can orbit the central
body with the same period as the orbiting body. Finding the L.4 and L5 points is
rather difficult, but the three others are not very hard because, as was stated before,
the two bodies and the orbital point are located on the same line. It can be shown
(using the methods developed below) that the distance from the Earth to the L2

Earth-Sun Lagrange point is given by

1 7 1
r+RP R(rt+R 21)

where 7 is the distance from the Sun to the Earth, R is the distance from the Earth
to L2, and p is defined as the ratio of the Earth’s mass to the Sun’s mass. This
unperturbed distance turns out to be about 1.5 million kilometers. Later, when we
have an equation for the perturbed distance to L2, we will use equation (2.1) to define
the distance that the point is shifted by the presence of the scalar potential. We now

turn our attention to that calculation.

2.2 Calculating the Shifted Location of L2

Our goal in this analysis is to determine whether measuring the distance to
the L2 Lagrange point will produce a useful constraint on a composition-independent
scalar potential. As we noted above, the Lagrange point will be located at the point
where the combined forces on a test object from the central body and the orbiting
body cause that test object to orbit the central body with the same orbital period
as the orbiting body itself. This is the requirement which causes an object at that
location to remain in the same relative position to the orbiting body. Define r to be
the distance from the Sun to the Earth, and define R to be the modified distance

from the Earth to the L2 point. Note that in the distance scales we are considering

16



here, 10°km < X < 107km, the force on the Earth due to the Sun is negligible
and 7 is therefore a constant in this calculation. We do, however, include the (small)

modification in the rotational period of the Earth.

O o

]
I /1 |

Figure 2.2: Diagram of the L2 calculation

As discussed before, a is defined so that the form of our scalar potential is

GM
Va(r) = _@ . M

>

The modified force on the Earth due to the Sun is

GMEMS d CKGMEMS _r
e RS S e A A}

F —
r2 dr T
F = GMEMS O./GMEMS r Q/GMEMS r
- r2 r2 A
GMgMg _r
F = 2 1+ a(l+ <)e %]

Because this is the central force keeping the Earth in orbit and the o term is small,
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Mgv?

22—, which leads to

we may equate this force to

Vg [1+a(1+z)e*§]

A

Now define Ty, as the modified orbital period of the Earth. Because the Earth’s orbit

is very nearly circular, we may use

27r
I —
E s
. 42r?
Vg = T—E2
Substitution for vx? then yields
47T2 GMS T _r

Now consider a test object of mass m orbiting the Earth at the L.2 point. Then
by definition its distance from the central body is » + R. The total force on the mass

is given by
GMgm d GMgm d
=—=———V, R - —
Ry ar s TR T

where V,.(r + R) is the scalar potential due to the Sun, and V,,(R) is the scalar

Var (R)

potential due to Earth. Now, as in the previous results, we find

GMEm R R

GMgm 7”+R 7+R _R
- 1+ S 1+ a1+ e d)

—m[1+a(1+ 3 Jem X

To remain in the same position relative to the Earth, the test object must move in a

nearly circular orbit as well. So we set this force equal to ;’fﬁ’; and obtain
GM R, . GM R R
v= T a1+ MRS o %u +a(l+)e §)

Now define T as the orbital period of the test object and substitute for v?

,  Am*(r+ R)?
VST
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Now, as was noted before, the test object must have the same period as the
Earth to remain in the same relative position over the entire orbit. This condition is

expressed by equating (2.2) and (2.3):

GMsg
r3

r., =r GMS
[1+a(1+x)e X = m[l—i—a(l-ﬁ-

T'+R)ei#]+ GME
A R2(r + R)

[1+a(1+§)e%]

If this is divided by GMg and the following definitions are made,

_ My
= .
A = [1+a(l+)e 5]
then the equation becomes
r3 r+ R, _.ir urs R, =
A=——]1 1 X —1 14+ —)e
crpl Telr e N i el e ]

The goal now is to group this equation by powers of R. Multiplication by R?(r + R)3

and some algebraic manipulation will yield the equation

3 3 3 3
R® +(3T)R4+(—%e_#—ﬂ)i: e_%+3r2)R3+(—%—% BN
ar* _.n o oprd par® _r 2uport 3\ 0
DV R B LS VELIE
2urt 2uar* _r par® _r ur’  par® _=
— — — R _ — =0
L i e s v e e W

This may then be simplified into its final form
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V! ) X
2 4
+ ai+all+ e N+ R+ { -2+ a@+ e AR
pr® _R
—y (hae) =0 (2.4)

We now define the shift in the Lagrange point distance AR as
AR=|R - R,|

where R is the perturbed distance given by (2.4) and R, is the unperturbed distance
given in (2.1). Note that, in the limits of zero potential strength or infinite distance
scale, equation (2.4) becomes the unperturbed equation for the L2 position, (2.1),
and therefore AR = 0. Obviously, when the scalar potential is zero, the results of
Newtonian gravity are unchanged. But the shift in the distance goes to zero as A

goes to infinity as well because the perturbed potential becomes

G(1+a)Mi My -
V(r)=— ( )My 2e %
r
and the scalar potential essentially amounts to a change in the gravitational constant;

this effect is cancelled out in the calculation.

2.3 Analysis and Results

In order to find the perturbed L2 point, it is necessary to find the zeroes of
equation (2.4). Since it cannot be solved analytically, we wrote a computer program
which finds the L2 point (see Appendix A) and obtained a few sample data points,
shown in the table below.

As can be seen in figure 2.1, an expected linear relationship exists between the
potential strength and the L2 shift produced for a fixed distance scale. Unfortunately,

it is clear from the results that the presence of even a strong fifth force has little effect.
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| Distance Scale (km) | Potential Strength | Distance Shift (km) |

1 x 10° 1x10°6 0(< 4.7 x 107?)
1 x 107 1x 1078 4.968 x 10~1
1% 102 1 x 10*2 0(< 4.7x107°)
1x 10 1x 10~ 2.799
1 x 107 1x107° 4.97
1 x 10° 1x10~* 2.47 x 10~*
5% 10° 1x107* 9.98
1 x 108 1x107*% 2.798 x 10°
1 x 107 1x10°% 4.968 x 10°

Table 2.1: L2 shifts at various scalar potential strengths and distance scales

Although WMAP orbits the L2 point, it would be nearly impossible to discern any
effect that a scalar potential would have on the satellite. This is primarily because
solar radiation pressure would have a much greater effect on any object placed near
the L2 point. This effect, caused by the momentum of electromagnetic radiation

emanating from the Sun, has a strength of

F 1
£ (578 x107%)—
Fq pr

where p is the matter density in kilograms per cubic meter and r is the radius of the

affected object in meters[23]. Meanwhile, the scalar force ratio is given by

=a(l+ §)€_§

Fg
For distance scales between 100 thousand and 100 million kilometers, acceptable
scalar strengths are at most between 10710 and 1078. So the radiation pressure will
greatly overpower the scalar potential, and we must conclude that this method of
constraining the scalar potential will not lead to better results than have already
been seen.

The only way that these measurements could possibly of any value was if they

were taken by a large, very high density object; this would minimize the effect of
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the radiation. To illustrate this point, consider a distance scale on the order of the

distance from the L2 point to the Earth. Then we may make the approximation

FS 2c

Fg e
If we want to significantly improve upon the current bounds, we would need to con-
sider potential strengths around 1071°. Because the effect of the scalar field will likely
be very minute at this strength (around 5 centimeters), we will likely need to ensure
that the radiation pressure produces a much smaller effect than the proposed poten-
tial. If we sent a spherical iron satellite with a mass density of 2500% to the L2
point, it would need to have a radius of about 2300 meters to keep the force due to
the radiation pressure one order of magnitude lower than the scalar effect. Since it
does not seem feasable to send an iron satellite with a volume of 51 cubic kilometers
and a mass of 55 billion kilograms containing sensors able to detect five centimeter
shifts in the central point of its orbit around L2, we must conclude that this is not a

very good way to constrain fifth-force potentials.
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Chapter 3

Calculation of < w > of B1913+16
Due to a Scalar Potential

3.1 Important Concepts from Orbital Mechanics

In the previous section, we considered the nearly-circular orbit of the Earth
around the Sun. This section deals with the elliptical orbits of a binary star system,
which is a little bit more complicated. A few preliminary remarks on orbital mechanics
should therefore be made.

In general, if a body is in a bound orbit around a central body due to a Newtonian
gravitational potential, the equation which relates its radial distance from the center

r to its angular position 6 is [9]

_ad’(1—-¢?)
~ (1 + ecosb)
This is the equation of an ellipse where the central body is at one focus. The quantity
a is called the semimajor axis and is the average distance of the orbiting body from
the central mass. The eccentricity e of the orbit can be thought of as how elliptical
the orbit is; when e = 0, the orbit is circular. We also see that # = 0 has been defined

as the point in the orbit where the orbiting body is the closest to the central body.

This point of closest approach is called the periastron of the orbit. At this point,
0 = 0
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Figure 3.1: An elliptical orbit

r = a(l—e)

At the opposite end of the orbit is the point farthest from the central mass; this is

called the apastron of the orbit. At the apastron,
g =«
r = a(l+e)

We will show that in the presence of a scalar potential, the orbit ellipse will rotate in

the plane and the angle describing the periastron’s location will change over time.

3.2 Introduction to Pulsars and Binary Pulsars

The objects that we will be studying are called pulsars. Pulsars are a type of
neutron star that rotate extremely rapidly and emit a beam of radiation along their
magnetic axis[15][23]. An observer on Earth with a radio telescope pointed at it will

measure intermittent radio pulses between 0.002 and 4 seconds.
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When a star between 1.4 - 3 solar masses can no longer sustain a fusion reaction
because it is composed of virtually nothing but iron, there is no longer an outward
pressure to prevent gravitational collapse, and it becomes a neutron star or a black

hole. Angular momentum is conserved in this collapse, so

1
L=mur —=vx-
r

This tells us that as the star’s radius shrinks, its equatorial rotational velocity will
increase. Because a star’s radius will typically change from about 1 million kilometers
to about ten kilometers, the increase in the rotation speed wil be enormous; some
millisecond pulsars reach a rotation speed at their surface of about ten percent of the
speed of light. These stars contain charged particles, and so their rotation creates a
huge effective current. This current gives the pulsar an enormously powerful magne-
tosphere which directs charged particles (either pulled from the surface of the star by
its huge electric field or captured from a nearby star) onto its magnetic dipole axis.
These particles are unable to escape the magnetosphere except along this magnetic
axis; this is what causes the radiation beam. Typically, the magnetic axis is inclined
with respect to the rotational axis, so the beam will rotate around as the star itself
rotates. If the beam is aligned with the Earth during part of its rotation, then an
observer will detect very rapid, extremely regular pulses from that star’s direction;
this effect is often compared to a lighthouse. Figure 3.2 is a diagram of the structure
of a pulsar; similar diagrams and further information may be found in the sources
[15] [23].

An observer on Earth will be able to discern various properties of the pulsar by
studying the properties, frequencies, and period of the detected pulses. But in the
case of an orbiting pulsar, they are also very useful for obtaining orbital parameters.

A binary pulsar is a system of two stars orbiting one another in which one or
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Figure 3.2: The structure of a pulsar

both of these stars are pulsars. The first binary pulsar was discovered by Hulse and
Taylor in 1975 [21] and is named B1913+16. Only one of the stars in this system is a
pulsar; the other is probably a white dwarf due to its smaller size. Using specialized
equipment at Princeton University, Taylor et. al. have been recording the arriving
pulses from the system over a very long period of time. The minute differences in
these pulses over time have allowed them to discern the properties of the pulsar’s
orbit around its companion (see Appendix B). Because the two objects rotate around
a fixed center of mass, the companion star’s orbit is simply the same ellipse scaled
according to the ratio of its mass to the pulsar mass.

The binary pulsar is particularly interesting because it serves as a test of General
Relativity. Two relativistic effects that are important are the precession of the perias-
tron and gravitational radiation[3]. General Relativity gives the following expression

for the precession of an orbit’s periastron A¢

_ 6nG*M?

A¢ IR
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Figure 3.3: The binary pulsar system

This is derived for a body orbiting around a central mass, but we expect the periastron
of the binary system to precess because the masses of the stars are huge compared to
their angular momentum. Taylor et. al. have used thier observations to confirm this
prediction of General Relativity.

Gravitational radiation is similar to electromagnetic radiation in many ways. Elec-
tromagnetic radiation is caused by electric charge being accelerated by electromag-
netic forces. And when gravitational charge (mass) is accelerated by gravity, it emits
gravitational radiation. The particularly large accelerations keeping the stars in orbit
around each other makes the binary pulsar a particularly strong source of gravita-
tional radiation. This radiation carries energy, and so the orbit loses this radiated
energy over time. The result is that the two stars inspiral towards each other and
the period of the orbit decreases. Eventually the two stars will collide at their center
of mass. Taylor et. al. have observationally confirmed that the average rate of the

period’s decrease is correctly predicted by General Relativity.
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A side effect of relativity is that the pulses arrive with a varying delay over the
pulsar’s orbit. This is an effect of the gravitational redshift of the pulses and of time
dilation due to the speed of the stars. This effect and the two described above are
all mass-dependent [22], and the intersection of the three curves shown in Figure
3.4 gives the observational value of the mass of the pulsar and its companion. This
determination of the masses is what creates the constraint on the strength of a scalar

potential, as we shall discover in the next section.

L

1.40

1.39

138

1.37

MASS OF COMPANION (solar masses):

| | | | |
1.42 1.43 1.44 145 146

MASS OF PULSAR (solar masses)-

Figure 3.4: Determining the masses of the stars in B1913+16 [22]
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3.3 Calculating the Periastron Shift

Our overall goal in this calculation is to obtain an expression for the change in
the angular position of the rotating bodies with respect to a change in their distance
coordinate. This expression may then be integrated over the orbit from the periastron
to the apastron to obtain the total change in the angle over one orbit. For normal
Newtonian gravity, the total angular change will be 2r — over one orbit, the orbiting
bodies will make a complete revolution and return to the original periastron location.
But if the potential energy of the system is perturbed slightly, we will find that the
total angular change will be slightly different than 27. This means that the mass
indeed returns to the periastron location, but this position has been rotated slightly
on the orbital plane. So this effect also causes the system’s periastron to precess, but
since both are perturbative effects, they are independent to first order. We therefore
say that the total rate of change of the periastron angle is approximately the sum
of the precession rate due to General Relativity and the precession rate due to the
scalar potential. In other words, the presence of a scalar potential will shift the 'fi—‘:
curve in figure 3.4. The constraint on the scalar potential is therefore that it cannot
shift the curve for the periastron precession ‘fl—“t’ beyond the curve for the rate of period

dp,

decrease 3. If it did, there would be two separate intersection points for the three

curves and the masses of the stars would be indeterminate. So in order to find this

constraint, we need to calculate the scalar potential strength that will shift the ‘fi—‘t“
curve to the very edge of the % curve at each distance scale.

Because we are dealing with a two-body problem in which each body is of roughly
equal mass, it is easiest to perform this calculation in the center of mass frame. Define

a vector 7 as

=
Il

Sl
|

S
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where 73, is the vector from the center of mass to the pulsar, and 7 is the vector from

the center of mass to the companion star. If we define the reduced mass i to be

_ omym,
/'L e —
my + me

then the vector 7 will describe an orbit of the reduced mass around the center of mass
that is a scaled version of the two separate orbits. This construction is simpler, and
equivalent to, the more complex problem of two bodies orbiting each other.

We begin by considering the same type of scalar potential as before,

Vi(r) = _aGMme

r

>3

Adding this to the normal gravitational potential energy yields a total gravitational

energy
e
The force is therefore
o - d
F(r)=-VV(r)= —%V(T)f
Fry = ~SMMer 4 o1 4 Dye 35
- r2 A

Now the total energy of the orbit of the mass pu about the center of mass is given by

1
E = §/wQ +V(r)

where v is the total velocity of u. This velocity may be decomposed into a radial

velocity and an angular velocity

1 _dr

df
E=—u/(Z
2#[(dt

P+ (L + V()

The angular momentum of the orbit is defined as

db
LI,WQ(%)
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Therefore, we may write the energy in terms of the angular momentum rather than

the radial velocity

1 dr pr? do
E:— 7Ty\2 P72
)"+ ()" + Vi)
1 dr L?
E = —u(=)?
Sh(5)" +

Sr? +V(r)

This can be solved for the time derivative of r, which gives us

(GF =2 (B=V() =

Solving the angular momentum equation for the time derivative of 8 yields

do

L2
R 2—
dt)

( - p2r

If we take these two expressions and divide the first by the second, we will obtain the

derivative of r with respect to 6

Gy = Gy = EEE -V ) - =

]

,U27"2

When this is solved for dfl, we get the equation we were looking for
L (E-V(r) - Zdr (3.1)

The only problem now is that the energy and angular momentum of the orbit are
unknowns; we need to find expressions for them.
We will first use some Lagrangian mechanics to find the angular momentum of

the orbit. The Lagrangian £ of the orbit is a quantity defined to be

L=1-v = gl + (D - ()

where T is the kinetic energy of the orbit. The Euler-Lagrange equation for the

minimum of the action gives us

d,oc, oL & db, dV(r)

() - — = - Z7)2 =
a'or) "o T hae M) g =0

31



do

o> we find

By inserting L for

d*r L? oV (r)
M(@)—W—— or = F(r)

Now, rearrangement of the equation for the angular momentum yields

d L d

dt — pr2de

and therefore
d? L d,L dr

0 = urdf \pr? do)
This is substituted into the expression above, and we subsequently define

1
u=-
r

to obtain

d Ldu L?

g @ Loau, L~ 3
“de(ude) (uu)

1
= F(=
)
Putting the modified force into the equation and rearranging yields the following

second-order differential equation —

If we assume a << 1 so that we may neglect the u-dependence on the right hand side
of this equation, then the solution to this equation is

L? 1
 pGmyme[l + a1+ £)e 5] (1 + ecos(f + 6)

r

)

where we may choose ' = 0 by defining the line # = 0 to intersect the orbit at the
periastron. This, of course, is the equation for the modified orbit. It is useful because
by comparison to the standard Keplerian equation for the elliptical orbit[9]

a*(1 — €?)
r=---——-
1+ ecosf
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we see that
L2

— =a(l —é?
pGmyme[l + a(l + $)e X ( )

This leads immediately to an expression for the angular momentum in terms of known
quantities

L? = pGmpymea(l — €*)[1 + a(l + %)e‘ﬂ (3.2)

The next step is to find an expression for the energy. But instead of looking for an
explicit expression, we will use the Virial Theorem, which states that for this bounded
system in the unperturbed case

<V >
2

<T >=—

where < T > is the time-average of the system’s total kinetic energy, and < V > is
the system’s average kinetic energy. Energy conservation then implies

<V>

EFE=<T>+<V >= 5

Because the perturbation is very small, we will simply add the average value of the
perturbing term to the average gravitational potential in order to obtain the perturbed
energy. Because the semimajor axis a is by definition the average value of r over the
orbit, we find

<V(r)>  Gmym,

Ex~ 5 5 (14 ae%)

We have kept the r in the exponential for simplification; this will average to a later.
So the quantity we need, F — V (r), can be written

E—V(r) = Gmym(1+ ae§)(% - %) (3.3)

We are now ready to calculate the shift in the periastron. When equation (3.3) is
substituted into our expression for df, equation (3.1) becomes

B 2/17“4 o1 1 27-1
df = [?(Gmpmc(l “+ ae )‘)(; — 2_0,)) —T ] dr
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Now if we integrate dr from the periastron to the apastron twice, the equation above
tells us that we will obtain the quantity 27 + Af — the unperturbed (Newtonian)
component of the integral will return 27 as expected, and the component proportional
to the perturbation will generate the periastron precession Af. This may be expressed
as

Tap 2,u7" 1 1

et
27T+A9_2/p S (Gmyme (1 + ae™8) (- = 5-)) = 1) Fdr

Simplification by inserting equation (3.2) and rearranging the result reduces this

expression to its final form —

21 4+ Af = 2av1 — €2

/Tap 1 1+ Oz(l + §)€_§
r

e T 2ar (- )+ e Spa 0 @G- y) ¢ O

One more calculation needs to be performed — the periastron and apastron dis-
tances do not remain fixed in the presence of the perturbing potential. Hence the
limits of integration in (3.4) are functions of o and A. To see this, we first reduce the
integral to its unperturbed form by setting o = 0. Then Af = 0 and we have

a(l+e) 1

7r—2a\/1—62/ dr

(1-e) \/—7"2 + 2ar — a?(1 — €?)

When the denominator is simplified, the integral becomes
a(l+e) 1
21 = 2aV1 — €2 dr
a(1-e) W —a(l—e))(a(l+e)—7)

The solution to an integral of this form is

/7‘21 d T
ro= ——
rl 7"\/7“—7“1 (r2—r) Vrlr2

so that the unperturbed integral gives

a(l+e) 1 ™
2av1 — €2 dr =2aV1 — e?(————) =27
/ \/(r —a(l—e))(a(l+e)—7) ( a?(1 — ez))
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and we see that the Keplerian orbit returns to its initial periastron position as ex-
pected. Notice that the endpoints of the integral were the roots of the quadratic in
the denominator, or equivalently, points where dr = 0. We expect this because the
periastron and apastron are the turning points of the orbit. The same will be true
of the perturbed periastron and apastron, but they will be the roots of the quadratic
expression in the perturbed integral (3.4).

We will approximate these perturbed endpoints by performing one iteration of
Newton’s method on the argument of the square root in (3.4). Defining this argument

as f(r), our approximation for the orbit endpoints z; will be
flx
T1 = X + df(’rg 0)
Tdr

r=xo

where z( is the unperturbed orbit endpoint. Our function and its derivative are

f(r)y = (=’ +2ar —a*(1 —€*) + e 3[r(2a — 1) —a®(1 — (1 + X)]
dj;(:) = 2(a—r)+af2ae 3173 4+ re_§(§ -2)+ aut ;\262)ei]

Dividing these two gives us a modification to xy which contains a term proportional

to alpha in its denominator. We factor this out and then expand in « to obtain

flr)  (=r*+2ar —a®(1 — €?)) + ae™x[r(2a — ) — a®(1 — €?)(1 + )] .

dfd_(:) - 2(a—1)

2ae % (1 — L)+ re~§ (2 — 2) 4 rlcheh)

2(a—r) }

However, because the unmodified periastron and apastron are the roots of the initial

p-ol

quadratic,

(—7“2 + 2ar — a®(1 — €?))

bl

r={a(1—¢),a(1+e)}
there is only one term which is not of second-order and survives when we evaluate
the expression at xy. This term gives us

fr) _aeX[rRa—r)—ad®(1—-e?)(1+1%)

Wd_@ N 2(a—7)
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Plugging the orbit endpoints into our expression for x; produces our approxima-

tions for the perturbed periastron and apastron —

_ a*(1—e)(1 —e?) _al_o)

e = a(l—e€)+ af e Je (3.5)
_ a®(1+¢€)(1 — €?) _aliye)

rep = a(l+e)—of S he Je (3.6)

Our model for the periastron precession, expressed in equations (3.4), (3.5), and
(3.6), has two compelling features. It correctly reduces to the unperturbed case in
the limit o — 0, but the precession also vanishes when A — 0, as we can see from

taking the limits

)\11_)110107“],,1 = a(l—e)
A5 Te = allte)

lim 2r + A0 = 27

A—00

This is entirely expected; as we noted in section 2.2, adding a scalar potential whose
distance scale is infinite amounts to changing the gravitational constant to (1+ «)G,
where (G, is the unperturbed constant. The total potential in this case remains
inverse-square, and the result is the original Newtonian orbit. So we see that the
derived model has the properties that we expect it to have. We must now evaluate
the integral in (3.4) and compare the precession rate to the observational bounds in

order to obtain the constraints on the scalar potential.

3.4 Numerical Analysis and Results

The integral in (3.4) cannot be evaluated analytically; we wrote a program in
order to calculate it numerically (see Appendix A). This program exhibits all the
correct properties; the distance scale going to infinity or the potential strength going

to zero reduces to the unperturbed situation. The results of our calculations are in
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table 3.1 and graphed in figure 3.5. Note that each value is based on a one million

step approximation of the integral.

| Potential Strength | Distance Scale (km) |

22x 103 5 x 10%
4.3 x 1075 7 x 10*
1.3x 107° 8 x 104
5.3 x 1076 9 x 10*
2.5 x 107 1% 10°
3.25 x 1078 5 x 10°
3x 1078 6 x 10°
28x10°8 7 x 10*
28 x 108 1 x 10°
8.7 x 1078 1 x 107
73x10°7 1 x 108
7.3 x 1076 1 x 10°
7.3x107° 1 x 1010
7.2 x 107* 1 x 10M
3.6 x 1073 5 x 1011

Table 3.1: Constraints on Scalar Potential Parameters

In figure 3.6, we compare the results obtained to the current constraints on a
composition-independent Yukawa potential. Our results are not good enough to push
the constraints significantly below the lunar precession or LAGEOS studies. Although
the pulsar study does seem to outperform current planetary studies at very long dis-
tance scales, a determination of the precession rates of the outer planets would easily
outperform the pulsar constraints. The main obstacle to achieving better bounds lies
in the innacurate determination of the rate of period decrease (see Fig. 3.4). If this
could be determined more accurately, the constraints would improve considerably. If
the linewidth of the period measurement could be decreased to the same width as that
of the periastron measurement, the constraints would probably improve by a couple

orders of magnitude. This could make the binary pulsar system the best constraint
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Figure 3.5: Constraint plot generated by periastron precession calculation

on a scalar potential for some distance scales in the near future.

3.5 Possibilities for Future Study

Things look very good for research into this area — many new binary pulsars are
being discovered and the methods that are being used to investigate their properties
are greatly improving [13]. Obviously, as the uncertainty in our observational data
on these systems improves, so will the constraints on a perturbing potential. In

addition, a binary pulsar system which is made up of two pulsars has been discovered
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Figure 3.6: Comparison of pulsar constraint to current bounds

[14]. As the amount of incoming data from this system will be twice as great, we may
obtain much better measurements of the orbital and post-Keplerian parameters than
is possible with single-pulsar systems. Binary pulsars will be an important phenomena
for future investigation in both fifth-force studies and learning about various other

phenomena such as gravitational radiation.
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Chapter 4

Analyis of a
Composition-Dependent Force
from an Galilean Free-Fall
Experiment

4.1 Free-Fall Experiments

As we saw in the first chapter, getting limits on a fifth force at small distance
scales generally involves performing a experiment here on Earth. In our study, we
consider a free-fall experiment designed to test the Weak Equivalence Principle in
laboratory distance scales. In the analysis of these experiments, the inertial and

gravitational masses are taken to be distinct constants in the force equation,

d*y GmyMpg
sy
where m; is the inertial mass that governs the proportion between force applied and
acceleration achieved and m, is the gravitational mass, the constant that determines
the force due to gravity on the mass. Equivalently, we may attribute this difference to

the presence of a fifth force rather than to the inequality of gravitational and inertial

mass:

d?r GmyMg _ GmiMp all + %)GmiMEe,§

my——s =
dt? r? r2 r?
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Essentially, we are stating the gravitational mass in terms of the fifth force as

mg =m;(1+ a1+ %))e‘§

One may object that we are equating a constant to a function of the position. How-
ever, we may attribute this to a gravitational constant that is a function of the height
of the object rather than to a changing mass.

Note that a force of this type is the result of the same potential as before;

G(1+ a)ym;Mg ok

V(r)=— .

However, rather than simply consider a fifth force which couples to all matter iden-
tically, we are now examining a potential whose strength is composition-dependent.
Our goal will be to take the experimental constraints placed on differential accel-
erations of test bodies and derive the limits on the strengths of these composition-

dependent forces.

4.2 Description of Experiment and Results

The experiment we will use to derive limits was performed in 1992 by Carusotto
et. al. [4]. To measure the difference in the accelerations of aluminum and copper in
free-fall, they constructed a metal disk by combining two half-disks, one consisting
of aluminum and the other of copper, and adding reflectors to the sides that were
designed to reflect light along a path parallel to its fall. This disk was dropped (in
a careful way) down an apparatus, at the base of which was a modified Michelson
interferometer. Two laser beams were reflected up the apparatus to the falling disk
then reflected back to photodiodes. The difference in the distance traveled by the two
beams is related to the angular motion of the disk, and this allowed a measurement

of the difference in the acceleration of the two sides.
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In its analysis of the results, the study assumes a Yukawa potential that has
different potential strengths for aluminum, ay;, and copper, a¢,. Based on their

data, Carusotto et. al. conclude
[AAa|<0.50cm

where

Aa=Aac, — Aoy

4.3 Limits Placed on a Force Coupling to Nucleons

Based on these findings, we wish to study a type of scalar potential which affects
neutrons and protons differently. In general, the potential of this type on an atom

due to the mass of the Earth is

Vir) = Gm; Mg n apanmpMEe_§ n anGnnmnMEe_§

T T T

where m; is the inertial mass of the atom, n, is the number of neutrons that the
atom contains, n, is the atomic number of the atom, m,, is the mass of a neutron,
and m,, is the mass of a proton. Here q, is the strength of the potential’s coupling to
protons and «, is the strength of its coupling to neutrons. Because the experimental
disk contains roughly the same masses of aluminum and copper and any difference
in mass has been eliminated through the experimental method, we may simply study
the limits on the differential accelerations of single atoms of copper and aluminum.
First, it is important to note that there are two principal naturally occuring iso-
topes of copper, CU-63 and CU-64. These isotopes are of equal abundance in nature,
and we can only assume that they are of equal abundance in the experimental disk.
Therefore, we will assign it an an atomic mass of 63.5 for statistical reasons. Now,

in order to get Carusotto’s results into a form useful for our purposes, we equate the
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potential coupling to the individual elements with a potential coupling to protons

and neutrons. For copper,

amga,M QN My M ANy M M
Cu Ee_rr)\: pllpculllp E6_§+ nltnoullin Ee_g

T T T
which leads to

QouMey = CpNpouMy + ANy oMy

Copper’s atomic number is 29 and its effective neutron number is therefore 34.5.
Using these facts, we find that the expression for the coupling constant is

29a,my + 34.50,my,
mcu

cou =

A similar expression can be found for aluminum, with an atomic number of 13 and a

neutron number of 14 —
13ap,my, + 14, my,

Qg =
ma

These two equations are subtracted to find the expression for A«

Ao — 29a,my, + 34.50,my, B 13apymy, + 14, my,

mcu ma;

Ao — ap,my(29m 4, — 13mey,) + amy, (34.5m 4 — 14mey,)

mgeyMmag

Therefore the experimental constraint in terms of the neutron and proton coupling
constants is

ap,my(29ma; — 13mey,) + amy, (34.5my — 14mey,)

Aol = |\ |<5x107%m  (4.1)

mcumAal
We now make use of the following readily-available facts
ma = 4.516x10 kg
mew = 1.062x10 Fkg
m, = 1.6725x107*"kg

m, = 1.6748x107% kg
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to simplify equation (4.1), which becomes
A(a, — 1.001380,)|<2.01706 10~ 'm

Because A > 0 and the coefficient of o, is just the ratio of the neutron mass to the

proton mass, the final simplfied form of (4.1) is

My, <2.017()6><10_1m
my, A

(4.2)

This equation gives the maximum difference between the couplings to protons and
neutrons at a given distance scale.

Two constraint equations are contained within (4.2), given by

m, 2.01706x10"'m

o, = Eap )\

M, 2.01706x10"'m
a, = —a,—

m, " A

The coupling constants are constrained to fall within these lines. If we define the
characteristic separation AV to be the difference between the maximum and minimum

allowed values of one parameter when the other is constant, it is easy to see that

-1
AT — 4.03412;10 m (4.3)

This is a measurement of the allowed difference in the coupling constants. It is
inversely proportional to A, and so non-negligible differences in the coupling constants
are only possible at very short distance scales.

A more formal analysis of this constraint requires that we change the parameters

of the potential. We first define

ap = acos(f)

a, = asin(f)
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where « is the normal potential strength and @ is the coupling angle, which assigns the
relative strength of the two coupling constants. Table 4.1 shows the relative strength
of the two coupling constants and their relative difference at various coupling angles.
The angle must be within 0 < 6§ < 7 because the potential has to be attractive.
The typical method is to express the constraints in terms of these parameters and
the distance scale. Graphs of the constraints will assign constant values to either
the distance scale or the mixing angle in order to show the constraints on the poten-
tial strength with respect to the other non-constant parameter. We will follow this
convention in our analysis.

Rearrangement of the constraint equation (4.2) and use of the fact that the proton

to neutron mass is approximately one yields

2.01706 x 10~ 'm
al

|sin(0) — cos(9)| <

and therefore

2.01706 x 10~'m

™
in(6) — < if 6> - 4.4
sin(f) — cos(f) < ) i 0>4 (4.4)
2.01 10~
cos() — sin(s) > ZUCXIT T g g o T (4.5)

Notice that the constraint is discontinuous; no constraint exists for # = 7 because
the potential becomes composition-independent at that angle.

Figure 4.1 shows the constraints on the potential strength as a function of the
angle for various distance scales. The strength must be below these curves; as we
expect, this provides no constraint on a composition-independent potential. The
strength scale is expressed in the usual way as a fraction of the Newtonian gravita-
tional potential, so a strength of one means that at zero distance gravity is effectively
doubled. We can see from this graph that any substantial composition-dependent

effects are excluded beyond about 100m.
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Figure 4.2 shows the potential strength constraint as a function of distance scale for
various angles on a logarithmic plot. The strength must be above these curves. The
following table illustrates the effect of the angle on the individual potential strengths

a, and o, We see that as the angle moves away from 7, the differentiation between

[uge(ad) [ 5 [ % [F-%
I 0.773 | 0.634 0.139
0.809 | 0.587 0.222
0.866 | 0.5 0.366
0.924 | 0.382 0.542
0.951 | 0.309 0.642

0.981 | 0.195 0.786

%)
N

;|:q g|300|>1 SNETSIE]

Table 4.1:
Relative Coupling Strengths at Different Angles

the coupling constants increases. Turning to figure 4.2, we see that the effect of the

7 is to increase the constraint on the potential strength at

angle moving away from
every distance scale. We conclude that the greater the difference in the interaction

with protons and neutrons, the more constrained the potential strength.

4.4 Qualitative Study of Coupling to Quarks

In order to demonstrate that many different types of couplings may be studied
simultaneously, we will carry the calculation in the previous section forward to qual-
itatively study couplings to quarks. We define «, and a4 to be the couplings to the
up quark and the down quark respectively. A proton is made of two up quarks and
a down quark and a neutron is made of two down quarks and an up quark. Because
the associated gluon fields will necessarily be included in any particle interactions
with the quarks, we define each quark to be one-third of the mass of the associated

nucleon.
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Figure 4.1: Constraints at fixed distance scales

We first define the new couplings in terms of the old, as before. The potentials in

terms of the couplings to nucleons may be rewritten in terms of couplings to quarks:

a,Gm, Mg Gm,Mg _» 20, o4
T VT Py = e )\( —)
T r 3 3
a,Gm, Mg o GmyMg x 204 Q
T ¢ N T e 3 + 3)
therefore,

200, Qg

o, = —

3 3

o — 204 0w

P 3 3
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Figure 4.2: Constraints at fixed coupling angles

Substitution into (4.2) gives us

6.05118 x 10~ tm
A

o — g < (4.6)

By inspection of (4.6) we realize that the constraints on constituent particles scale
as their individual mass. The quark constraints are three times weaker, giving us a

characteristic separation of

1.2102x10°
AT = w (4.7)

Equation (4.7) shows that as a result of the weaker constraints on the lighter particles,

a significant difference in coupling constants is possible at greater distance scales. All
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of the previous analyses of the nucleon coupling constraints will be identical for quarks
except for the weakened constraint.

We have shown how it is possible to move from one set coupled objects to another
to see how the constraints are different. A more sophisticated analysis would allow
us to generate constraints which bound many different types of couplings with a

relatively small amount of experimental data.

4.5 Possibilities for Future Study

Only one experiment involving two different types of substances was examined in this
study. Further experiments involving many different types of substances would make
our analyses much more statistically accurate. They would also give us systems with
different properties like spin and nuclear composition to work with. If exotic matter
were used in a differential acceleration experiment, even more interesting couplings
could be studied. A few different pairings have already been studied [7], but more

would be useful.
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Appendix A

Computer Programs Used in
Calculations

A.1 Program used in Calculation of L2 Shift

This program was used to find the zeroes of the quintic equation which describes

the shifted position of the L2 Lagrange point. First, it asks for the value of the scalar

potential and the distance scale, and then it takes a range of guesses for the shifted

position and calculates the value of the equation for those guesses. After multiple

tries, the guesses are made to converge around the zero of the equation corresponding

to the shifted position.

This procedure is then repeated for each combination of

distance scale and potential strength.

/] /53K ks ks o ks o ko o sk sk ok ks o sk o ok sk s ok sk o ke o ks o sk o ok o o ks o ko o ks ok ks o ok sk o ok ko o ks o sk o o ko o ks o ok sk o sk o ko o sk ok o k sk o ok
L2Table v1.0 by James Younkin

//
//
//
//
//
//
//
//

Date: February 23, 2004

Purpose: This program takes system parameters for the scalar potential and asks the user fo:
order to generate a table listing the values of the governing polynomial at each d:

Input (from standard input):

Output (to standard output):

The strength and distance scale of the scalar boson potential.
limit, and number of entries to create the table

The program will display a table listing the distance, shift f:
and polynomial value for each table entry.

//**********************************************************************************************1

#include <math.h>
#include <fstream.h>
#include <iostream.h>
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#include <iomanip.h>

// Variable declarations
int i;

char holder;

double R_unpert;

bool done_main;

bool done_system;

int row_count;

int step_counter;

const double r = 149476000;
const double mu = 0.000002986;
bool done_finish_choice;
double distance_scale;
double strength;

bool done_system_choice;
bool done_calc;

double lower_bound;
double upper_bound;

int step_number;

double step_size;

double curr_distance;
bool restart;

double fifth;

double fourth;

double third;

double second;

double first;

double constant;

double polynomial;
double shift;

double A;

char system_choice;

char finish_choice;

int main()

{
// Initialize
done_main = false;
done_system = false;

row_count = 0;

// Clear screen / Introduction

for(i=1;i<=50;i++)
{

cout << endl;

} // for

cout << "L2Table by James Younkin" << endl;

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Counter used in program loops
Used for program pauses
Unperturbed L2 distance in km
Governs main program loop
Governs system loop

Used to display table in readable p:

Used to count to step_number
Sun-Earth distance in km
mass ratio -- earth/sun
Governs final choice menu

Scalar potential distance scale

Strength of scalar potential
Governs system choice loop
Governs calculation loop
Smallest distance on table
Largest distance on table

number of steps to be performed

Step size

Current step distance
Governs system restart loop
R°5 piece of polynomial

R"4 piece of polynomial

R"3 piece of polynomial

R"2 piece of polynomial

R™1 piece of polynomial
constant piece of polynomial

polynomial value at curr_distance
shifted distance at curr_distance

A function
Choice in system menu
Choice in final menu

cout << "This program generates a table which allows the determination" << endl;

cout << "of the distance shift in the L2 point in the presence of a" << endl;



cout << "scalar potential." << endl << endl;
cout << "Press any key followed by ENTER to continue";
cin >> holder;
for(i=1;i<=50;i++)
{
cout << endl;

} // for

// Store unperturbed distance
R_unpert = 1500000;

// Begin main program loop
while(done_main==false)
{
// Get system variables
done_finish_choice = false;

cout << "Please enter the strength of the scalar potential: " << endl;
cin >> strength;
cout << "Please enter the distance scale of the potential in km: " << endl;

cin >> distance_scale;

A =1 + (strength*exp(-(r/distance_scale))*(1+(r/distance_scale)));
done_system = false;

done_system_choice = false;

// Begin system loop
while(done_system == false)
{
// Initialize
step_counter = 0;
row_count = 0;
done_calc = false;
done_system_choice = false;

// Get table properties

cout << "Please enter the lowest distance for the table in km: " << endl;
cin >> lower_bound;

cout << "Please enter the highest distance for the table in km: " << endl;
cin >> upper_bound;

cout << "Please enter the number of table entries you wish to produce: " << endl;
cin >> step_number;

step_number++;

// Generate and display table

step_size = (upper_bound - lower_bound)/(step_number - 1);

curr_distance = lower_bound;

while(done_calc==false)

{
for (i=1;i<=50;i++)
{
cout << endl;
} // for
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Y /7 it

restart

row_count = 0;

restart = false;

cout << Madkokokokokskokokok ok sk ok o oo s ke ek ok sk ke sk sk sk s s s s o ok ok ok skesk sk sk sk sk sk sk ok ok ok ok kkak kokok 1! << end ] ;
cout << "*x Current Distance * Distance Shift  * Polynomial *" << endl;
cout << Maokokokokokokokok sk ok ok ok ok sk okok sk ok ok ok skok ok skeok sk sk ok stk sk ko sk ok sk ok skeok ok skokokskoksk ook skokok ok ko kk kb ok 1 << endl;

while(restart == false)

{

fifth = pow(curr_distance, 5);
fourth = 3.0*r*pow(curr_distance, 4);
third = ((-strength*pow(r, 3)*exp(-(r+curr_distance)/(distance_scale)))/(distance_
second = (-(((pow(r, 3))/(A))*(1+(strength*exp(-(r+curr_distance)/(distance_scale)
first = (-((2*mu*pow(r, 4))/(A)) - ((2*muxstrength*pow(r, 4)*exp(-(curr_distance)/
constant = -((mu*pow(r, 5))/(A)) - ((muxstrength*pow(r, 5)*exp(-(curr_distance)/(
polynomial = fifth + fourth + third + second + first + constant;
shift = curr_distance - R_unpert;
cout << "*" << setw(20) << curr_distance << "k" << setw(20) << shift << "*" << set:
row_count++;
step_counter++;
curr_distance = curr_distance + step_size;
if (step_counter == step_number)
{
done_calc = true;
restart = true;
COUt << Makokokok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok k k ok ok ok ok ok 3k ok 3k ok ok ok ok ok ok 3k k3 ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok sk ok ok ok ok dkokokkok ok 1 <<
cout << "Calculation complete." << endl;

else if (row_count == 20)

{

true;

cout << Mokokokokakokokokok ke kR ki sk ok ksl s ok ok sk sk ok sk sk sk ok ek sk sk ke sk sk sk ok kskskskk ok kskskok ok kskskkkkkokk ! << endl << endl;
cout << "Press any key followed by ENTER to continue" << endl;
cin >> holder;

} // else if

else

{
} // else

} // while

} // while

// Ask if the user wants to generate another table for the same system

while(done_system_choice == false)

{

cout << "Do you want to generate another table for this system? (y/n)" << endl;
cin >> system_choice;
switch(system_choice)

{

case ’y’: case ’Y’:
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{
done_system_choice = true;
break;
} // case
case ’n’: case ’N’:
{
done_system = true;
done_system_choice = true;
cout << endl;
break;
} // case
default:
{
cout << "That is not a valid choice!!" << endl;
} // default
} // switch
} // while
} // while
// Ask if the user wants to restart with a new system
while(done_finish_choice = false)
{
cout << "Would you like to create another system?" << endl;
cin >> finish_choice;
switch(system_choice)
{
case ’y’: case ’Y’:
{
done_finish_choice
break;
} // case
case 'n’: case 'N’:
{

done_main = true;

true;

done_finish_choice
cout << endl;
break;
} // case
default:
{
cout << "That is not a valid choice!!" << endl;
} // default
} // switch
} // while
} // while
cout << endl << "Thank you for using L2Table!" << endl;
return 0;
} // int main()

true;
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A.2 Program Used in Calculation of < w > of B19134-16

This is the program which I used to calculate the precession of the periastron
of the binary pulsar B1913+16. After the user inputs the parameters of the scalar
potential, it asks for the number of steps to use in calculating the integral and the
size of the buffer to use around the endpoints. Then the program performs the
corresponding integral for the angular change in position of the periastron over one
orbit using Simpson’s rule. It outputs a menu listing the number of steps, potential
strength, distance scale, step size, modified periastron and apastron distance, the
total value of the integral, the angular change in the periastron over one orbit, and
the angular change of the periastron over one year. Using this program is just a
matter of adjusting the potential strength for a given distance scale until the
periastron shift per year matches the observational limits.

There was an unfortunate problem with the program — the total unperturbed

integral is about 10 percent off. We compensated for this by rescaling the periastron

shift by 52;?9. Overall, this won’t make much difference as the order of the constraints

is not affected, but the constraints should only be interpreted as correct within ~15%.

//**********************************************************************************************

// Periadvint v4.1 by James Younkin
// Date: April 10, 2004

// Purpose: To evaluate the sum for the advance of the periastron of the binary pulsar B1913+1

// scalar boson potential. The integral is calculated by subtracting the alpha = 0 i
// alpha integral. The integrals are calculated numerically using Simpson’s Rule.

// Input (from standard input): The strength and distance scale of the scalar boson potential.
// of steps to be summed over.

// Output (to standard output): The program will output a table of the summation of the perias
// calculation progresses, and will output a summary of the calcu.
// complete; the summary will include the input parameters, the s
// advance over one orbit, and the advance over one year.

//**********************************************************************************************
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#include <math.h>

#include <fstream.h>
#include <iostream.h>
#include <iomanip.h>

// Variable Declaration

int i;

char holder;

double strength;

double distance_scale;

double step_number;

bool done_main;

bool done_calc;

const double periastron = 0.7466;
const double apastron = 3.1536;
double curr_distance;

double step_size;

int curr_step;

bool done_choice;

char choice;

double sum;

double sum_term;

bool curr_step_even;

double integral_buffer;

const double semimajor_axis = 1.9501;
const double eccentricity = 0.6171338;
double periastron_prime;

double apastron_prime;

double periastron_new;

double apastron_new;

double g;

double numerator;

double denominator;

const double Pi = 3.14159265358979323846;
double orbit_mod;

double endpoint_mod;

double dg_dr_apastron_prime;
double dg_dr_periastron_prime;
double sqrt_term;

double total_sum;

double total_sum_year;

double sum_prime;

double linear_constant_g;

double expon_r_lambda;

int main()

{

done_main = false;

26

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Variable used in program loops; clearin,
Takes the buffer when program prompts f
The strength of the scalar potential
The distance scale of the potential in |
Number of steps for the calculation to |
Boolean for main program loop

Boolean for calculation loop

Periastron separation in millions of ki.
Apastron separation in millions of kilor
Current distance for summation

Step size determined by step_number
Current step number for sum

Boolean governing final choice loop
Final choice for new calculation

Total sum of the calculation, to step
Final summation term at the current dis
Boolean governing the application of Sii
The distance from the endpoints that th
The semimajor axis of the unperturbed o:
The eccentricity of the unperturbed orb:
The periastron in AU, modified for the |
The apastron in AU, modified for the pe:
The effective periastron for the integr
The effective apastron for the integral
The value of the function g at curr_dis
The term in the numerator of the integr
The term in the denominator of the inte
The value of Pi

The value of the correction for the per:
The value of the correction for the end;
The value of the partial derivative of |
The value of the partial derivative of |
Variable used to help in final sum calc
Final value for periastron advance per «
Value of periastron advance over one ye:
The total value of the integral multipl
The constant coefficient of the linear -
Defined to be exp(-curr_distance/distan



// Clear screen / Introduction

for(
{

i=1;i<=50;i++)

cout << endl;

Y //
cout
cout

for
<< "Periadvint v4.1 by James Younkin" << endl;
<< "This program calculates the periastron advance of the binary

star system" << endl;

cout
<L e
cout
cout
cin
for(
{

co

Y 7/

// B
whil
{

<< "B1913+16 in the presence of a Yukawa potential of specified"
ndl;

<< "strength and distance scale." << endl << endl;

<< "Press any key followed by ENTER to continue";

>> holder;

i=1;i<=50;i++)

ut << endl;
for

egin main calculation loop
e(done_main == false)

done_choice = false;
done_calc = false;

// Ask for parameters

cout << "Please enter the scalar potential strength:" << endl;

cin >> strength;

cout << "Please enter the scalar distance scale, in kilometers:" << endl;
cin >> distance_scale;

distance_scale = distance_scale/1000000;

cout << "Please enter the number of steps for the sum to" << endl;

cout << "be taken over: (Note that the number of steps" << endl;

cout << "should be even)" << endl;

cin >> step_number;

for(i=1;i<=50;i++)
{

cout << endl;
} // for

// Calculate the modified periastron and apastron

periastron_prime = (semimajor_axis*(1.0-eccentricity))+(strength*exp((-semimajor_axis*(1.0
apastron_prime = (semimajor_axis*(1.0+eccentricity))-(strength*exp((-semimajor_axis*(1.0+e
periastron_new = periastron_prime;

apastron_new = apastron_prime;

// Initialize calculation parameters

curr_distance = periastron_new;

step_size = ((apastron_new - periastron_new)/(step_number-1));
sum = 0;
curr_step

1;
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curr_step_even = true;

// Begin calculation loop
while(done_calc == false)

{

// Calculate sum term ( integral over g(r,lambda) )

expon_r_lambda = exp(-curr_distance/distance_scale);

numerator = 1.0+(strength*(1.0+(curr_distance/distance_scale))*exp(-curr_distance/dist
denominator = ((-pow(curr_distance, 2)+(2.0*semimajor_axis*curr_distance)-(pow(semimaj
g = numerator/denominator;

sum_term = (1.0/curr_distance)*pow(g, (1/2))*2.0*semimajor_axis*pow((1-pow(eccentricit

// Modify sum term according to Simpson’s Rule

if( curr_step == 1)

{

Y /7 if

else if( (curr_step_even == true) && (curr_step != step_number) )
{

sum_term = sum_term * 2.0;
curr_step_even = false;

} // else if
else if( curr_step_even == false )
{

sum_term = sum_term * 4.0;
curr_step_even = true;

} // else if

else if( curr_step == step_number )
{
} // else if

// Add sum term to total sum
sum = sum + ( (1.0/3.0)*(step_size)*(sum_term) );

// Check to see if calculation is finished; otherwise continue
if (curr_step == step_number)
{
done_calc = true;
cout << "Calculation complete." << endl << endl << endl;
Y // it
else
{
curr_distance = curr_distance + step_size;
curr_step++;
} // else
} // while

// Modify the completed sum by multiplying by coefficient, find
delta_theta, find angular change per year

sum_prime = sum;

total_sum = sum_prime - 5.61911153622421974;
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total_sum_year = total_sum * 1130.04;

// Make final calculations

endpoint_mod = endpoint_mod * 1000000;
step_size = step_size * 1000000;
apastron_prime = apastron_prime * 1000000;
periastron_prime = periastron_prime * 1000000;
distance_scale = distance_scale * 1000000;
for(i=1;i<=50;i++)

{
cout << endl;

} // for

// Display calculation summary

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

"CALCULATION SUMMARY" << endl;

Waskokokokokokkokokokokokokokkkk k! << endl << endl;
"Scalar Potential Strength: "
"Scalar Distance Scale: "
"Modified Periastron Location: "
"Modified Apastron Location:
"Integral Buffer: "
"Number of Steps: "
"Step Size: "
"Total Value of Integral: "
"Total Value of Normalized Integral:
"Total Periastron Advance, One Orbit:
"Total Periastron Advance, One Year:

n

n

"Press any key followed by ENTER to continue.";

cin >> holder;

// Ask for new calculation
while(done_choice == false)

{

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

strength << endl;

distance_scale << " km" << endl;
periastron_prime << " km" << endl;
apastron_prime << " km" << endl;
endpoint_mod << " km" << endl;
step_number << endl;

step_size << " km" << endl;

sum << endl;

sum_prime << endl;

total_sum << endl;
total_sum_year << endl << endl;

cout << "Would you like to begin a new calculation? (y/n)" << endl;

cin >> choice;
switch(choice)
{
case ’y’: case ’Y’:
{
done_choice = true;
for(i=1;i<=50;i++)
{
cout << endl;
} // for
break;
} // case
case ’n’: case ’N’:
{
done_choice = true;
done_main = true;

cout << endl << "Thank you for using Periadvint v4.1!" << endl << endl;

break;
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} // case
default:
{
cout << "That is not a valid choice!";
break;
} // default
} // switch
} // while
} // while
return 0;
} // int(main)
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Appendix B

Properties of the Binary Pulsar
B1913416

The Keplerian (classical) parameters of B1913+16 that are of interest to us are [12]

pular mass ~ 1.441Mg,,
companion mass =~ 1.387Mg,,
semimajor axis = 1,950,000km
periastron distance = 747,000km
apastron distance = 3,153,600km
eccentricity = 0.617131

orbital period = 7.75hr
The post-Keplerian parameters of B1913+16 are [21]

d
average periastron precession rate (due to GR) = 42266125
yr

time dilation amplitude = 0.0043s

rate of period decrease = —2.4211 x 10_12§
S

Given these parameters, the two stars will inspiral and collide in about

300 million years.
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